Passer au contenu

/ La recherche

Je donne

Rechercher

Sciences de la santé; Sciences médicales

Laboratoire d'électropharmacologie

Centre de recherche hospitalier Faculté de médecine
Autre numéro : 514 376-3330 #3587 (Information)
Autre courriel : jenniferanne.bacchi@icm-mhi.org (Personne contact)

Portrait

À propos

Les recherches effectuées dans le laboratoire du Dr Nattel examinent les mécanismes de base contrôlant la bioélectricité cardiaque et l'arythmogenèse dans le but de découvrir de nouvelles théories pertinentes sur le plan clinique qui pourront se traduire par le développement de méthodes thérapeutiques novatrices. À cette fin, le laboratoire utilise une vaste gamme de modèles moléculaires, cellulaires et théoriques, et d'animaux entiers afin d'étudier les facteurs fondamentaux qui contrôlent l'activité électrique normale du cœur et son dérèglement dans des modèles de la maladie, et pour identifier de nouvelles cibles et de nouveaux candidats thérapeutiques. Les méthodes employées comprennent l'utilisation de modèles d'animaux entiers (y compris de petits et grands modèles animaux de maladies cardiaques humaines); l'analyse par patch clamp en configuration cellule entière ou canal isolé de fibroblastes et de cardiomyocytes isolés; l'étude de noyaux de fibroblastes et de cardiomyocytes isolés; la biochimie; l'entraînement et la culture des cellules; la biologie moléculaire; la cartographie traditionnelle et optimale; et l'utilisation de modèles mathématiques de l'activité électrique du cœur. Les manipulations effectuées comprennent des approches pharmacologiques; le transfert génétique par voie virale; la transgénèse; l'entraînement et l'instrumentation in vivo de longue durée; et l'ablation par radiofréquence. Les importantes contributions issues du groupe du Dr Nattel incluent la découverte d'un nouveau canal K+ auriculaire dans le cœur humain; le clonage, la caractérisation et l'analyse fonctionnelle de nouvelles sous-unités des canaux K+; le profilage des bases moléculaires et fonctionnelles de la fibrillation auriculaire; et l'identification d'une gamme de nouvelles cibles pour les traitements antiarythmiques médicamenteux.

Affiliations

Unités de recherche

  • Centre de recherche de l'Institut de cardiologie de Montréal

Autres établissements et centres de recherche

  • Institut de cardiologie de Montréal (ICM)

Équipe

Responsables

À l’Université de Montréal

Expertise

Projets et financement

Projets et réalisations

1.  Les mécanismes de la fibrillation auriculaire (FA) dans des modèles in vivo. La FA est la forme la plus courante d'arythmie chez l'humain et est associée à des taux accrus de morbidité et de mortalité. Dans le cadre de ces études, nous développons des modèles animaux novateurs de FA afin d'explorer ses mécanismes sous-jacents spécifiques et d'identifier de nouvelles cibles thérapeutiques prometteuses basées sur ces mécanismes. 

Les travaux dans ce domaine examinent trois hypothèses principales : 1. Le remodelage des fibres auriculaires causé par la FA est le résultat de modifications des micro-ARN qui agissent sur les fibroblastes cardiaques. 2. La signalisation modifiée des récepteurs nucléaires de l'angiotensine joue un rôle dans la FA. 3. Un entraînement en endurance soutenu à long terme produit un substrat qui favorise le maintien de la FA par une combinaison de remodelage autonome et structural.

2. Le rôle du remodelage du transporteur et du courant ionique atrial dans la FA. La FA et les pathologies qui l'entraînent modifient d'importantes propriétés bioélectriques des cellules. Ces modifications augmentent la probabilité d'une arythmie et déterminent sa réponse à une vaste gamme d'interventions thérapeutiques. Pendant ces études, nous utilisons la biologie moléculaire, l'analyse par patch clamp et l'imagerie calcique pour déterminer précisément les changements qui s'opèrent dans les mécanismes cellulaires de traitement des ions entraînant la FA et gouvernant sa réponse aux interventions médicales.

Les hypothèses précises abordées sont : 1. Les canaux K+ activés par le Ca2+ de faible conductance participent à la survenue de la FA par l'intermédiaire de différences de repolarisation auriculaire régionales et induites par le remodelage. 2. Les canaux K+ dans les fibroblastes cardiaques sont remodelés dans les paradigmes de promotion de l'AF et contrôlent le comportement prolifératif et la production de protéines de la matrice extracellulaire en modulant l'entrée de Ca2+. 3. Les canaux TRPC3 (Transient Receptor Potential 3) régulent l'entrée du Ca2+ dans les fibroblastes auriculaires et contribuent au substrat fibrotique de l'AF sous le contrôle du micro-ARN-26.

3. Les mécanismes moléculaires qui contrôlent l'arythmogenèse et la repolarisation des ventricules. Dans le cadre de ce projet, nous étudions les facteurs qui entraînent des arythmies ventriculaires mettant la vie en danger, particulièrement au niveau des canaux ioniques cardiaques qui contrôlent le retour des cellules cardiaques à leur état de repos après avoir été excitées. Les anomalies du processus déstabilisent le rythme cardiaque et peuvent mener à une mort subite chez des personnes autrement en santé.

Les hypothèses à l'étude sont : 1. Le remodelage causé par le courant de repolarisation et les changements de traitement du Ca2+ sont liés à la production d'arythmies associées à un délai de repolarisation excessif. 2. Des anomalies prolongées du rythme cardiaque causent des formes individuelles de remodelage arythmogène transmural des canaux ioniques par l'intermédiaire de mécanismes moléculaires spécifiques. 3. La composition de la sous-unité béta est un déterminant clé de la fonction des canaux K+.

Publications et communications

Publications

1.  Luo X, Pan Z, Shan H, Xiao J, Sun X, Wang N, Lin H, Xiao L, Maguy A, Qi XY, Li Y, Gao X, Dong D, Zhang Y, Bai Y, Ai J, Sun L, Lu H, Luo XY, Wang Z, Lu Y, Yang B, Nattel S. MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J Clin Invest. 2013 May 1;123(5):1939-51. 

2.  Xiao L, Koopmann TT, Ordög B, Postema PG, Verkerk AO, Iyer V, Sampson KJ, Boink GJ, Mamarbachi MA, Varro A, Jordaens L, Res J, Kass RS, Wilde AA, Bezzina CR, Nattel S. Unique Cardiac Purkinje Fiber Transient Outward Current β-Subunit Composition: A Potential Molecular Link to Idiopathic Ventricular Fibrillation. Circ Res. 2013 May 10;112(10):1310-22.

3.  Dawson K, Wakili R, Ordög B, Clauss S, Chen Y, Iwasaki Y, Voigt N, Qi XY, Sinner MF, Dobrev D, Kääb S, Nattel S. MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation. 2013 Apr 9;127(14):1466-75.

4. Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, Shi Y, Kamiya K, Murohara T, Kodama I, Tardif JC, Schotten U, Van Wagoner DR, Dobrev D, Nattel S. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation. 2012 Oct 23;126(17):2051-64.

5.  Nattel S, Dobrev D. The multidimensional role of calcium in atrial fibrillation pathophysiology: mechanistic insights and therapeutic opportunities. Eur Heart J. 2012 Aug;33(15):1870-7.

6.  Dobrev D, Carlsson L, Nattel S. Novel molecular targets for atrial fibrillation therapy. Nat Rev Drug Discov. 2012 Mar 30;11(4):275-91.

7. Wakili R, Voigt N, Kääb S, Dobrev D, Nattel S. Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 2011 Aug;121(8):2955-68.

8.  Nattel S. New ideas about atrial fibrillation 50 years on. Nature. 2002 Jan 10;415(6868):219-26.

9. Kneller J, Zou R, Vigmond EJ, Wang Z, Leon LJ, Nattel S. Cholinergic atrial fibrillation in a computer model of a two-dimensional sheet of canine atrial cells with realistic ionic properties. Circ Res. 2002 May 17;90(9):E73-87.

10.  Li D, Fareh S, Leung TK, Nattel S. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation. 1999 Jul 6;100(1):87-95.

Disciplines

  • Cardiologie
  • Pharmacologie
  • Biochimie
  • Biologie moléculaire
  • Mathématiques appliquées

Champ d’expertise

  • Système cardiovasculaire
  • Modélisation
  • Molécules bioactives
  • Molécules organiques et biomolécules
  • Bioprocédés et systèmes biomédicaux

Aide en ligne pour le profil de votre unité de recherche | Nous joindre

Le Répertoire des unités de recherche est propulsé par les données du SADVR et est un projet du CENR.

Personnes-ressource dans nos équipes
Qui fait quoi?
Formulaires, procédures et systèmes
Formulaires et procédures
Occasions de financement avec PIVOT
PIVOT