Passer au contenu

/ La recherche

Rechercher

Sciences de la santé Sciences médicales

Catherine Martel Modifier son profil

Professeure sous octroi adjointe

Faculté de médecine - Département de médecine

catherine.martel.9@umontreal.ca

Professeure accréditée

Faculté de médecine - Département de pharmacologie et physiologie

catherine.martel.9@umontreal.ca

Autre numéro : 514 376-3330 #2977 (Travail 1)
Autre courriel : catherine.martel@icm-mhi.org (Travail)

Portrait

Expertise de recherche

Discovery of a new integrated model for macrophage reverse cholesterol transport. Atherosclerosis is driven by the accumulation of cholesterol in the artery wall, which triggers a maladaptive immune response in which macrophages play a prominent role. The overarching focus of my research career is to understand the mechanisms driving the accumulation of macrophages and cholesterol, with the goal of identifying pathways to remove these constituents from atherosclerotic plaques and to induce disease regression. Clinical studies aiming to find ways to prevent atherosclerosis, including by enhancing the removal of cholesterol from the atherosclerotic blood vessel wall, have not been as successful as expected. Our team sought to focus on the path that cholesterol acceptors are taking to deliver their cholesterol to the liver and/or the intestines for excretion. Collaborators and I discovered a new prerequisite player in the modulation of cholesterol removal from the artery wall: the lymphatic system. We quantitatively reported for the first time that without a functional lymphatic network, cholesterol excreted from plaque macrophages cannot be properly conducted out of the artery wall. We now aim to better understand the interplay between lymphatic function and atherosclerosis onset and progression, with the ultimate goal of discovering new approaches for the development of novel therapies targeting atherosclerosis

Biographie

2011-2013   Post-doctorat - Washington University School of Medicine in St. Louis, MO, USA

2009-2011   Post-doctorat - Mount Sinai School of Medicine, NY, USA

2009           Post-doctorat, formation complémentaire - Swiss Federal Institute of Technology, Lausanne, Switzerland

2006-2009   Doctorat Sciences Biomédicales - Université de Montréal, Montréal, Canada

2007           Doctorat, formation complémentaire - INSERM U687, Hôpital Lariboisière, Paris, France

2006-2008   Diplome d'études supérieures, Formation en enseignement post-secondaire - Université de Montréal, Montréal, Canada

2003-2005   Maîtrise Sciences Biomédicales - Université de Montréal, Montréal, Canada

Prix et distinctions

2018-2019   Société Québécoise d’Hypertension Artérielle (SQHA), New Investigator Award (Quebec, Canada)

2016-2017   Fondation Jacques-de Champlain / Heart & Stroke Fondation, New Investigator Award

2016           Banting Research Foundation, Discovery Award

2013-2014   Montreal Heart Institute Foundation, Bourse Norman D. Hébert

2013           American Heart Association, Best of American Heart Association’s Specialty Conferences

2013           American Heart Association, Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) Council, Travel Award for Young Investigators

2012           Washington University School of Medicine in St Louis (MO), First Prize – Postdoctoral trainee/Resident/Fellow Research Award

2012           American Heart Association, Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) Council, Junior Investigator Award for Women 2012

2011           Canadian Institutes of Health Research, Committee: Institute of Nutrition, Metabolism and Diabetes, Travel Award

2011           Société des Sciences Vasculaires du Québec (SSVQ), Top-ranked presentation

2011        Gordon Research Conference on Atherosclerosis, Top-ranked presentation

2006-2009   Canadian Institutes of Health Research, Doctoral Research Award (Montreal, Canada)

2007-2008   French government (INSERM) and the Quebec government (FRQS), Doctoral Research Scholarship (Paris, France)

Affiliations et responsabilités

Affiliations de recherche

Enseignement et encadrement

Encadrement

Thèses et mémoires dirigés (dépôt institutionnel Papyrus)

2016

Lymphatic vessel function in atherosclerosis

Diplômé(e) : Milasan, Andreea
Cycle : Maîtrise
Diplôme obtenu : M. Sc.

Projets

Projets de recherche

2016 - 2022

Unravelling the role of cellular microvesicles on lymphatic vessel function

Chercheur principal : Catherine Martel
Sources de financement : CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG)
Programmes de subvention : PVX20965-Programme de subvention à la découverte individuelle ou de groupe
2016 - 2020

Caractérisation du rôle du réseau lymphatique dans l'athérosclérose

Chercheur principal : Catherine Martel
Sources de financement : FRQS/Fonds de recherche du Québec - Santé (FRSQ)
Programmes de subvention : PVXXXXXX-Bourse de chercheur-boursier : Junior 1

Rayonnement

Publications et communications

Publications

Publications sélectionnées

  1. S. Pasquin, S. Chehboun, A. Dejda, Y. Meliani, V. Savin, G. Warner, R. Bosse, A. Tormo, G. Mayer, M. Sharma, P. Sapieha, C. Martel, J. Gauchat. Cardiotrophin-like cytokine, a lipocytokine? Scientific Reports. 2018 Mar 5;8(1):3990
  2. A. Milasan, G. Jean, F. Dallaire, J. Tardif, Y. Merhi, M. Sorci-Thomas, C. Martel. Apolipoprotein A-I modulates atherosclerosis through lymphatic vessel-dependent mechanisms in mice. Journal of the American Heart Association. 2017 September. https://doi.org/10.1161/JAHA.117.006892
  3. S. Cointe, E. Rhéaume, C. Martel, O. Blanc-Brude, É. Dubé, F. Sabatier, F. Dignat-George, J. Tardif, A. Bonnefoy. The thrombospondin-1-derived peptide RFYVVMWK improves the adhesive phenotype of CD34+ cells from atherosclerotic patients with type II diabetes. Cell Transplantation. 2016 October. https://doi.org/10.3727/096368916X693329
  4. C. Martel. Life as an early career researcher. Future Science OA, 2016 Feb 12;2(1):FSO108. doi: 10.4155/fsoa-2016-0011.
  5. A. Milasan, N. Tessandier, S. Tan, A. Brisson, E. Boilard, C. Martel. Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis. Journal of Extracellular Vesicles 2016, 5: 31427.
  6. H. Zhang, T. Vallim, C. Martel. Translational and therapeutic approaches to the understanding and treatment of dyslipidemia. Arterioscler Thromb Vasc Biol. 2016  36: e56-e61
  7. A. Milasan, F. Dallaire, G. Mayer, C. Martel. (2016) Effects of LDL Receptor Modulation on Lymphatic Function. Scientific Reports. 2016 Jun 9;6:27862. doi: 10.1038/srep27862.
  8. A Milasan, J Ledoux, C Martel. Lymphatic network in atherosclerosis: the underestimated path. Future Science OA, 2015 Aug (6):1-10.
  9. C.N. Manning, C. Martel, S. Sakiyama-Elbert, M.J. Silva, G.J. Randolph, R.H. Gelberman, S. Thomopoulos. Adipose-derived mesenchymal stromal cells modulate tendon fibroblast responses to macrophage-induced inflammation. Stem Cell Research & Therapy. 2015 Apr 16;6(1):74.
  10. C. Martel, J. Yao, C.H. Huang, J. Zou, G.J. Randolph , L.V. Wang. Photoacoustic lymphatic imaging with high spatial-temporal resolution. Journal of Biomed Optic. 2014 19(11), 116009. (Corresponding author).
  11. H. Zhang, R.E. Temel, C. Martel. Cholesterol and lipoprotein metabolism. Arterioscler Thromb Vasc Biol. 2014 Sep;34(9):1791-4.
  12. R. Duivenvoorden, J. Tang, D.P. Cormode, A.J. Mieszawska, D. Izquierdo-Garcia, C. Ozcan, M.J. Otten, N. Zaidi, M.E. Lobatto, S.M. van Rijs, B. Priem, E. L. Kuan, C. Martel, B. Hewing, H. Sager, M. Nahrendorf, G. J. Randolph, E.S.G. Stroes, V. Fuster, E.A. Fisher, Z.A. Fayad, W.J.M. Mulder. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun. 2014 Jan 20;5:3065.
  13. S. Ivanov, C. Martel. Does lymphatic growth rely on immune cell function? OA Immunology 2013 Sep 01;1(1)8.
  14. C. Martel, G.J. Randolph. Atherosclerosis and transit of HDL through the lymphatic vasculature. Curr Atheroscler Rep. 2013 Sep;15(9):354. (Invited review; Special feature in www.MDLinx.com) (Corresponding author).
  15. A.M. Platt, J.M. Rutkowski, C. Martel, E.L. Kuan, S. Ivanov, M. A. Swartz, G. J. Randolph. Scarce lymphatic capillaries can be sufficient to support normal murine dendritic cell mobilization. J Immunol. 2013 May 1;190(9):4608-20.
  16. C. Martel, W. Li, B. Fulp, A.M. Platt, E.L. Gautier, M. Westerterp, R. Bittman, A.R. Tall, S.H. Chen, M.J. Thomas, D. Kreisel, M.A. Swartz, M.G. Sorci-Thomas, G.J. Randolph. Macrophage reverse cholesterol transport in mice relies on the lymphatic vasculature. J Clin Invest. 2013; 123(4):1571–1579. (Selected to be featured in “JCI Impact” http://www.jci.org/kiosk/impact)
  17. J. Yao, C.H. Huang, C. Martel, K.I. Maslov, L. Wang, J.M. Yang, L. Gao, G.J. Randolph, J. Zou, L.V. Wang. Water-Immersible MEMS Scanning Mirror Designed for Wide-field Fast-scanning Photoacoustic Microscopy. Conference Proceedings, Proc. SPIE 2013; 8581.
  18. P. Theroux, C. Martel, A. Bonnefoy. Blocking the Terminal Complement Complex: Mismatch and Misconception. Am Heart Journal, 2012 Dec;164(6):e21.
  19. C. Martel, C.B. Granger, M. Ghitescu, A. Stebbins, A. Fortier, P.W. Armstrong, A. Bonnefoy, P. Theroux. Pexelizumab fails to inhibit assembly of the terminal complement complex in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Insight from a substudy of the Assessment of Pexelizumab in Acute Myocardial Infarction (APEX-AMI) trial. Am Heart Journal, 2012 Jul;164(1):43-51.
  20. E. Dumas, C. Martel, P.E. Neagoe, A. Bonnefoy, M.G. Sirois. Angiopoietin-1 but not angiopoietin-2 promotes neutrophil viability: Role of interleukin-8 and platelet-activating factor. Biochim Biophys Acta – Molecular Cell Research. 2012 Feb;1823(2):358-67.
  21. C. Martel, S. Cointe, P. Maurice, S. Matar, M. Ghitescu, P. Théroux, A. Bonnefoy. Requirements for membrane attack complex formation and anaphylatoxins binding on collagen-activated platelets. PLoS ONE 2011 Apr 15;6(4):e18812.
  22. B. Marcheix, M. Carrier, C. Martel, M. Cossette, M. Pellerin, D. Bouchard, LP Perrault. Effect of pericardial blood processing on postoperative inflammation and the complement pathways. Ann Thorac Surg. 2008 Feb;85(2):530-5.
  23. P. Théroux, C. Martel. Complement activation in acute coronary syndromes. Can J Cardiol. 2006 Feb;22 Suppl B:18B-24B

Communications

Communications sélectionnées

  1. (2017) Cleaning up arteries by improving lymphatic transport. The Group on the Molecular & Cell Biology of Lipids, University of Alberta, Edmonton, Canada
  2. (2017) Repenser le transport inverse du cholestérol. Laboratoire de génétique, Université de Montréal, Montréal, Canada
  3. (2017) L’apolipoprotéine A-I nettoie les artères en améliorant la fonction lymphatique. Club de recherches cliniques du Québec (CRCQ). Chercheur boursier FRQS. Orford, Canada
  4. (2017) From Sewer to Saviour: Links Between Lymphatic Function and Atherosclerosis. 5e Symposium Jacques-de Champlain: New Targets in the Prevention and Treatment of Atherosclerosis. Montréal, Canada
  5. (2017) From sewer to saviour: intrinsic links between lymphatic function, lipid metabolism and atherosclerosis. Discovery and Validation of Therapeutic Targets Research Day, Faculté de Pharmacie, Université de Montréal, Canada
  6. (2017) Lymphatics - Forgotten second circulation in health and disease. Co-animation du workshop avec Dr. Spencer Proctor, conférencier invité. Discovery and Validation of Therapeutic Targets Research Day, Faculté de Pharmacie, Université de Montréal, Canada
  7. (2016) The lymphatic network: unraveling the role of an underestimated path in cardiovascular disease. 2016 HDL Workshop, ATVB, Nashville, TN
  8. (2015) Lymphatic network in atherosclerosis: the underestimated path. Ewha Womans University, Seoul, Republic of Korea
  9. (2015) The lymphatic network: new potential therapeutic target in atherosclerosis. International Congress on Lipid Metabolism & Atherosclerosis, Seoul, Republic of Korea
  10. (2015) The lymphatic network: new potential therapeutic target in atherosclerosis. Centre Hospitalier de l'Université Laval (CHUL), Québec, Canada
  11. (2015) The lymphatic network: new potential therapeutic target in atherosclerosis. University of Cincinnati, Cincinnati, USA
  12. (2014) The lymphatic network: new potential therapeutic target in atherosclerosis. Invited by the Hemovascular Group at the Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada
  13. (2014) Le réseau lymphatique : nouvelle cible thérapeutique potentielle dans l'athérosclérose. Invited speaker by the Département de Pharmacologie de l'Université de Montréal, Montréal, Canada
  14. (2013) Macrophage reverse cholesterol transport in mice relies on the lymphatic vasculature. American Heart Association Scientific Sessions 2013 / Best of AHA Specialty Conferences at Scientific Sessions 2013, Dallas, USA
  15. (2013) Profound Macrophage Sessility Characterizes Mouse Atherosclerotic Plaques During Disease Progression and Regression. Washington University School of Medicine, St. Louis, MO. Cardiovascular Division, St Louis, USA
  16. (2013) Lymphatic network and cholesterol transport in atherosclerosis. Montreal Heart Institute, Canada
  17. (2013) Macrophage reverse cholesterol transport in mice relies on the lymphatic vasculature. Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) Scientific Sessions April 2013, Orlando, USA
  18. (2012) Reverse Cholesterol Transport Relies On A Functional Lymphatic Network. Washington University School of Medicine, St. Louis, MO. Department of Pathology and Immunology, St Louis, USA
  19. (2012) Lymphatic vessels are the principal route mediating macrophage reverse cholesterol transport. Montreal Heart Institute, Canada
  20. (2012) Lymphatic vessels are the principal route mediating macrophage reverse cholesterol transport. Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) Scientific Sessions April 2012, Chicago, USA
  21. (2011) Role of lymphatic vessels in reverse cholesterol transport. Mount Sinai School of Medicine, New York, New York. Immunology Institute., New York, USA

Disciplines

  • Cardiologie

Champ d’expertise

  • Système cardiovasculaire
  • Athérosclérose
  • Thromboses et embolies
  • Transport moléculaire
  • Habitudes de vie et santé
  • Hypertension artérielle
  • Physiologie
  • Pathologies