Passer au contenu

/ La recherche

Rechercher

Sciences de la santé; Sciences médicales

Catherine Martel

Fonction des vaisseaux lymphatiques dans l'athérosclérose

Professeure sous octroi agrégée

Faculté de médecine - Département de médecine

catherine.martel.9@umontreal.ca

Professeure accréditée

Faculté de médecine - Département de pharmacologie et physiologie

catherine.martel.9@umontreal.ca

Autre numéro : 514 376-3330 #2977 (Travail 1)
Autre courriel : catherine.martel@icm-mhi.org (Travail)

Médias

Le français vu par Catherine Martel

Portrait

Expertise de recherche

Ses travaux postdoctoraux, cités dans de nombreux journaux et congrès internationaux, sont très certainement instigateurs de nouvelles avenues en recherche sur la santé cardio-vasculaire. Ils démontrent, qu’en condition d’hypercholestérolémie, le transport cellulaire et moléculaire par les vaisseaux lymphatiques est altéré: dans différents modèles d’athérosclérose, l’inefficacité du transport lymphatique résulte en l’accumulation de cholestérol dans les tissus périphériques, dont les artères. Les travaux actuels de ce nouveau laboratoire de recherche qu'elle a mis sur pied en 2014 visent à déterminer les rôles physiopathologiques du réseau lymphatiques dans l’initiation, la progression et la régression de l’athérosclérose. Des études fondamentales et translationelles (avec la collaboration des experts en recherche clinique) lui permettront  d’identifier les causes de ce transport lymphatique dysfonctionnel, et éventuellement de cibler des stratégies permettant de restaurer la fonction lymphatique dans les différents stades de la maladie athérothrombotique.

Biographie

Catherine Martel a obtenu son doctorat en 2009 de l’Université de Montréal et a  poursuivi sa formation postdoctorale au Mount Sinai School of Medicine de New York, puis à la Washington University School of Medicine à St Louis, Missouri, durant laquelle elle a entre autre obtenu le prix du Junior Investigator Award for Women de l'American Heart Association (ATVB). 

Prix et distinctions

2018-2019   Prix Martial G. Bourassa, Outstanding scientist < 45 years-old (Montreal Heart Institute, Quebec, Canada)

2018-2019   Société Québécoise d’Hypertension Artérielle (SQHA), New Investigator Award (Quebec, Canada)

2016-2017   Fondation Jacques-de Champlain / Heart & Stroke Fondation, New Investigator Award

2016           Banting Research Foundation, Discovery Award

2013-2014   Montreal Heart Institute Foundation, Bourse Norman D. Hébert

2013           American Heart Association, Best of American Heart Association’s Specialty Conferences

2013           American Heart Association, Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) Council, Travel Award for Young Investigators

2012           Washington University School of Medicine in St Louis (MO), First Prize – Postdoctoral trainee/Resident/Fellow Research Award

2012           American Heart Association, Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) Council, Junior Investigator Award for Women 2012

2011           Canadian Institutes of Health Research, Committee: Institute of Nutrition, Metabolism and Diabetes, Travel Award

2011           Société des Sciences Vasculaires du Québec (SSVQ), Top-ranked presentation

2011        Gordon Research Conference on Atherosclerosis, Top-ranked presentation

2006-2009   Canadian Institutes of Health Research, Doctoral Research Award (Montreal, Canada)

2007-2008   French government (INSERM) and the Quebec government (FRQS), Doctoral Research Scholarship (Paris, France)

Enseignement et encadrement Ce professeur recrute

Recrutement en recherche Ce professeur recrute

Poste d'étudiant(e) à la maîtrise/doctorat et PDF

  • Début: Automne 2019
  • Titre : Caractérisation du rôle des vaisseaux lymphatiques dans l’athérosclérose
  • Investigateur Principal : Dre Catherine Martel
  • Lieu : Centre de recherche de l’Institut de Cardiologie de Montréal (affilié avec la Faculté de Médecine de l’Université de Montréal)

Nous sommes à la recherche d’un(e) étudiant(e) de maîtrise ou doctorat et d'un stagiaire postdoctoral désirant travailler dans le domaine de la cardiologie et de l’immunologie, plus particulièrement sur le rôle des vaisseaux lymphatiques dans les maladies cardiovasculaires. Le projet proposé consiste à utiliser diverses techniques de biologie cellulaire et moléculaire (cytométrie en flux, western blot, immunofluorescence, immunohistochimie, imagerie intravitale, ELISA, PCR, etc.) pour mieux comprendre les mécanismes physiopathologiques qui modulent la fonction des vaisseaux lymphatiques dans l’initiation et la progression de l’athérosclérose. Ultimement, nos travaux visent à identifier de nouveaux joueurs clés dans le bon fonctionnement des vaisseaux lymphatiques pour éventuellement découvrir de nouvelles cibles thérapeutiques potentielles dans le traitement de l’athérosclérose.

Formation et expérience requises:

Baccalauréat, maîtrise ou PhD (dépendamment du poste) en sciences biomédicales, microbiologie, biologie, biochimie ou équivalent avec une moyenne cumulative supérieure à 3.5 sur 4.3. Une formation en immunologie serait un atout considérable. L’étudiant(e) choisi(e) devra être motivé(e), dynamique et avoir un bon esprit d’équipe.

Pour postuler:

Veuillez transmettre votre curriculum vitae comprenant les noms de deux références ainsi qu’une lettre de motivation et un relevé de notes universitaires récent à Dre Catherine Martel par courriel à l’adresse suivante: catherine.martel@icm-mhi.org

Encadrement

Thèses et mémoires dirigés (dépôt institutionnel Papyrus)

2016

Lymphatic vessel function in atherosclerosis

Diplômé(e) : Milasan, Andreea
Cycle : Maîtrise
Diplôme obtenu : M. Sc.

Projets

Projets de recherche

2018 - 2023

Chaire de recherche du Canada in cardiovascular imaging at the Montreal Heart Institute

Chercheur principal : Catherine Martel
Sources de financement : SPIIE/Secrétariat des programmes interorganismes à l’intention des établissements
Programmes de subvention : PVX50399-Chaires de recherche du Canada
2016 - 2022

Unravelling the role of cellular microvesicles on lymphatic vessel function

Chercheur principal : Catherine Martel
Sources de financement : CRSNG/Conseil de recherches en sciences naturelles et génie du Canada (CRSNG)
Programmes de subvention : PVX20965-(RGP) Programme de subvention à la découverte individuelle ou de groupe
2016 - 2021

Lymphatic vessel function in atherosclerosis

Chercheur principal : Catherine Martel
Sources de financement : IRSC/Instituts de recherche en santé du Canada
Programmes de subvention : PVXXXXXX-(PJT) Subvention Projet
2016 - 2020

Caractérisation du rôle du réseau lymphatique dans l'athérosclérose

Chercheur principal : Catherine Martel
Sources de financement : FRQS/Fonds de recherche du Québec - Santé (FRSQ)
Programmes de subvention : PVXXXXXX-Bourse de chercheur-boursier : Junior 1
2016 - 2019

Caractérisation du rôle du réseau lymphatique dans l'athérosclérose

Chercheur principal : Catherine Martel
Sources de financement : FRQS/Fonds de recherche du Québec - Santé (FRSQ)
Programmes de subvention : PVXXXXXX-Établissement de jeunes chercheurs Juniors 1
2017 - 2018

SQHA Prix du nouveau chercheur

Chercheur principal : Catherine Martel
Sources de financement : Société québécoise d'hypertension artérielle (La)
Programmes de subvention :
2015 - 2018

Suvention FICM 2015-2018

Chercheur principal : Catherine Martel
Sources de financement : Fondation de l'Institut de cardiologie de Montréal
Programmes de subvention :
2016 - 2017

Rôle des vaisseaux lymphatiques dans l'athérosclerose

Co-chercheurs : Catherine Martel
Sources de financement : FCI/Fondation canadienne pour l'innovation
Programmes de subvention : PVXXXXXX-Fonds des leaders
2016 - 2017

Prix d’excellence de la Fondation Jacques-de Champlain en collaboration avec la Fondation des maladies du coeur et de l’AVC

Chercheur principal : Catherine Martel
Sources de financement : FMCC/Fondation des maladies du coeur du Canada
Programmes de subvention :
2015 - 2016

Lymphatic vessel function in atherosclerosis

Chercheur principal : Catherine Martel
Sources de financement : Banting Research Foundation (The)
Programmes de subvention :

Rayonnement

Organisation d’événements

1. Comités d'examen par les pairs

  • Heart and Stroke Foundation of Canada, Sub-panel VI, Thrombosis / lipid and lipoproteins / fundamental nutrition research (2016 - present)
  • Non-resident expert, The French National Research Agency (ANR), Projet de recherche collaborative, Committee number CE14 (2017)
  • Fonds de recherche du Québec — Santé, Bourse à la maîtrise (2016 - present)
  • Canadian Institutes of Health Research – Postdoctoral Fellowships Program (2016 - 2017)
  • Programme Sc. Biomédicales, Université de Montréal – Bourse aux études graduées (2015 - present)
  • Fondation de l’Institut de Cardiologie de Montréal, Bourse d’excellence, études graduées (2016 - present)

2. Activités de gestion / Participation à des activités sans but lucratif

  • Board of Directors, Canadian Society of Arteriosclerosis, Thrombosis, and Vascular Biology (2016 - present)
  • President - Montreal Heart Institute Animal Ethics Committee (2017 - present)
  • Member - Montreal Heart Institute Animal Ethics Committee (2015 - present)
  • Future Science Early Career Research Award judging panel (2017 - present)
  • Early Career Committee of the ATVB Council  of the AHA (2013 - 2017)

3. Organisation d'événements

  • Co-Chair of the 2020 CSATVB & CLD joint Annual Meeting, Québec
  • Chair of the 2019 Spring HDL Workshop, Boston
  • Moderator, 2018 American Heart Association Scientific Sessions – Meaningful Translational Research: Mouse to Human, Chicago
  • Chair of the 2018 Spring HDL Workshop, San Francisco
  • President of the 2016 Montreal Heart Institute Research Day, Montreal
  • Workshop co-chair/speaker, ATVB Early Career Training Sessions (2013 - 2017)
  • Scientific judge at the 2016 Congress of the Quebec Society of Vascular Sciences, Montreal
  • Scientific judge at the Montreal Heart Institute Research Day, Montreal (2014-2016)
  • Organizing committee member of the 2015 Montreal Heart Institute Research Day, Montreal

4. Rapporteur scientifique pour des revues et des conférences internationales

  • Circulation Research
  • Cardiovascular Research
  • Scientific Reports
  • Canadian Journal of Cardiology
  • Journal of the American College of Cardiology
  • Clinical and Translational Medicine
  • Journal of Clinical & Cellular Immunology
  • Trends in Endocrinology and Metabolism
  • Journal of Thoracic Disease
  • American Heart Association (AHA) Scientific Sessions (Abstract reviewer)
  • Future Science Open Access

5. Activités d'éditions

  • Young Ambassador, Future Science OA (2015 - 2016)
  • Member of Editorial Board, Future Science OA (2016 - present)
  • Social Media Editor, Future Science OA (2016 - present)

Publications et communications

Publications

Publications sélectionnées

  1. S. Pasquin, S. Chehboun, A. Dejda, Y. Meliani, V. Savin, G. Warner, R. Bosse, A. Tormo, G. Mayer, M. Sharma, P. Sapieha, C. Martel, J. Gauchat. Cardiotrophin-like cytokine, a lipocytokine? Scientific Reports. 2018 Mar 5;8(1):3990
  2. A. Milasan, G. Jean, F. Dallaire, J. Tardif, Y. Merhi, M. Sorci-Thomas, C. Martel. Apolipoprotein A-I modulates atherosclerosis through lymphatic vessel-dependent mechanisms in mice. Journal of the American Heart Association. 2017 September. https://doi.org/10.1161/JAHA.117.006892
  3. S. Cointe, E. Rhéaume, C. Martel, O. Blanc-Brude, É. Dubé, F. Sabatier, F. Dignat-George, J. Tardif, A. Bonnefoy. The thrombospondin-1-derived peptide RFYVVMWK improves the adhesive phenotype of CD34+ cells from atherosclerotic patients with type II diabetes. Cell Transplantation. 2016 October. https://doi.org/10.3727/096368916X693329
  4. C. Martel. Life as an early career researcher. Future Science OA, 2016 Feb 12;2(1):FSO108. doi: 10.4155/fsoa-2016-0011.
  5. A. Milasan, N. Tessandier, S. Tan, A. Brisson, E. Boilard, C. Martel. Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis. Journal of Extracellular Vesicles 2016, 5: 31427.
  6. H. Zhang, T. Vallim, C. Martel. Translational and therapeutic approaches to the understanding and treatment of dyslipidemia. Arterioscler Thromb Vasc Biol. 2016  36: e56-e61
  7. A. Milasan, F. Dallaire, G. Mayer, C. Martel. (2016) Effects of LDL Receptor Modulation on Lymphatic Function. Scientific Reports. 2016 Jun 9;6:27862. doi: 10.1038/srep27862.
  8. A Milasan, J Ledoux, C Martel. Lymphatic network in atherosclerosis: the underestimated path. Future Science OA, 2015 Aug (6):1-10.
  9. C.N. Manning, C. Martel, S. Sakiyama-Elbert, M.J. Silva, G.J. Randolph, R.H. Gelberman, S. Thomopoulos. Adipose-derived mesenchymal stromal cells modulate tendon fibroblast responses to macrophage-induced inflammation. Stem Cell Research & Therapy. 2015 Apr 16;6(1):74.
  10. C. Martel, J. Yao, C.H. Huang, J. Zou, G.J. Randolph , L.V. Wang. Photoacoustic lymphatic imaging with high spatial-temporal resolution. Journal of Biomed Optic. 2014 19(11), 116009. (Corresponding author).
  11. H. Zhang, R.E. Temel, C. Martel. Cholesterol and lipoprotein metabolism. Arterioscler Thromb Vasc Biol. 2014 Sep;34(9):1791-4.
  12. R. Duivenvoorden, J. Tang, D.P. Cormode, A.J. Mieszawska, D. Izquierdo-Garcia, C. Ozcan, M.J. Otten, N. Zaidi, M.E. Lobatto, S.M. van Rijs, B. Priem, E. L. Kuan, C. Martel, B. Hewing, H. Sager, M. Nahrendorf, G. J. Randolph, E.S.G. Stroes, V. Fuster, E.A. Fisher, Z.A. Fayad, W.J.M. Mulder. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun. 2014 Jan 20;5:3065.
  13. S. Ivanov, C. Martel. Does lymphatic growth rely on immune cell function? OA Immunology 2013 Sep 01;1(1)8.
  14. C. Martel, G.J. Randolph. Atherosclerosis and transit of HDL through the lymphatic vasculature. Curr Atheroscler Rep. 2013 Sep;15(9):354. (Invited review; Special feature in www.MDLinx.com) (Corresponding author).
  15. A.M. Platt, J.M. Rutkowski, C. Martel, E.L. Kuan, S. Ivanov, M. A. Swartz, G. J. Randolph. Scarce lymphatic capillaries can be sufficient to support normal murine dendritic cell mobilization. J Immunol. 2013 May 1;190(9):4608-20.
  16. C. Martel, W. Li, B. Fulp, A.M. Platt, E.L. Gautier, M. Westerterp, R. Bittman, A.R. Tall, S.H. Chen, M.J. Thomas, D. Kreisel, M.A. Swartz, M.G. Sorci-Thomas, G.J. Randolph. Macrophage reverse cholesterol transport in mice relies on the lymphatic vasculature. J Clin Invest. 2013; 123(4):1571–1579. (Selected to be featured in “JCI Impact” http://www.jci.org/kiosk/impact)
  17. J. Yao, C.H. Huang, C. Martel, K.I. Maslov, L. Wang, J.M. Yang, L. Gao, G.J. Randolph, J. Zou, L.V. Wang. Water-Immersible MEMS Scanning Mirror Designed for Wide-field Fast-scanning Photoacoustic Microscopy. Conference Proceedings, Proc. SPIE 2013; 8581.
  18. P. Theroux, C. Martel, A. Bonnefoy. Blocking the Terminal Complement Complex: Mismatch and Misconception. Am Heart Journal, 2012 Dec;164(6):e21.
  19. C. Martel, C.B. Granger, M. Ghitescu, A. Stebbins, A. Fortier, P.W. Armstrong, A. Bonnefoy, P. Theroux. Pexelizumab fails to inhibit assembly of the terminal complement complex in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Insight from a substudy of the Assessment of Pexelizumab in Acute Myocardial Infarction (APEX-AMI) trial. Am Heart Journal, 2012 Jul;164(1):43-51.
  20. E. Dumas, C. Martel, P.E. Neagoe, A. Bonnefoy, M.G. Sirois. Angiopoietin-1 but not angiopoietin-2 promotes neutrophil viability: Role of interleukin-8 and platelet-activating factor. Biochim Biophys Acta – Molecular Cell Research. 2012 Feb;1823(2):358-67.
  21. C. Martel, S. Cointe, P. Maurice, S. Matar, M. Ghitescu, P. Théroux, A. Bonnefoy. Requirements for membrane attack complex formation and anaphylatoxins binding on collagen-activated platelets. PLoS ONE 2011 Apr 15;6(4):e18812.
  22. B. Marcheix, M. Carrier, C. Martel, M. Cossette, M. Pellerin, D. Bouchard, LP Perrault. Effect of pericardial blood processing on postoperative inflammation and the complement pathways. Ann Thorac Surg. 2008 Feb;85(2):530-5.
  23. P. Théroux, C. Martel. Complement activation in acute coronary syndromes. Can J Cardiol. 2006 Feb;22 Suppl B:18B-24B

Communications

Communications sélectionnées

  1. (2019) Early rescue of lymphatic function limits atherosclerosis progression in Ldlr-/- mice. May 2019, North American Vascular Biology Organization (NAVBO) / Lymphatic Forum 2019 - Exploring the Lymphatic Continuum, Austin, Texas, USA
  2. (2019) Extracellular vesicles at the Heart of Lymphatic function in RCT. May 2019, HDL Workshop, Boston, USA.
  3. (2019) Time to rethink Reverse Cholesterol Transport. Research Institute of the McGill University Health Centre (RI-MUHC), Centre for Translational Biology. April 2019. Montréal, Canada.
  4. (2018) Le réseau lymphatique, nouvelle cible thérapeutique potentielle dans les maladies cardiovasculaires. Prix Martial G. Bourassa. Montréal, Canada.
  5. (2018) La Lymphe. Club de Discussion du Département de Physiologie & Pharmacologie, Université de Montréal, Canada.
  6. (2018) Maladies cardiovasculaires & Réseau lymphatique: à la découverte de nouvelles cibles thérapeutiques. Association Québécoise du Lymphoedème. CR-CHUM, Montréal, Canada.
  7. (2018) Extracellular vesicles at the Heart of Lymphatic Function. Nanoscale Flow Cytometry Symposium for Cancer, Infection, and Disease. University of Ottawa, Ottawa, Canada.
  8. (2018) Targeting lymphatic vessels in atherosclerosis. XVIII International Symposium on Atherosclerosis. Curbing atherosclerosis - The Montreal Heart initiative, Toronto, Canada.
  9. (2017) Cleaning up arteries by improving lymphatic transport. The Group on the Molecular & Cell Biology of Lipids, University of Alberta, Edmonton, Canada.
  10. (2017) Repenser le transport inverse du cholestérol. Laboratoire de génétique, Université de Montréal, Montréal, Canada.
  11. (2017) L’apolipoprotéine A-I nettoie les artères en améliorant la fonction lymphatique. Club de recherches cliniques du Québec (CRCQ). Chercheur boursier FRQS. Orford, Canada.
  12. (2017) From Sewer to Saviour: Links Between Lymphatic Function and Atherosclerosis. 5e Symposium Jacques-de Champlain: New Targets in the Prevention and Treatment of Atherosclerosis. Montréal, Canada.
  13. (2017) From sewer to saviour: intrinsic links between lymphatic function, lipid metabolism and atherosclerosis. Discovery and Validation of Therapeutic Targets Research Day, Faculté de Pharmacie, Université de Montréal, Canada.
  14. (2017) Lymphatics - Forgotten second circulation in health and disease. Co-animation du workshop avec Dr. Spencer Proctor, conférencier invité. Discovery and Validation of Therapeutic Targets Research Day, Faculté de Pharmacie, Université de Montréal, Canada.
  15. (2016) The lymphatic network: unraveling the role of an underestimated path in cardiovascular disease. 2016 HDL Workshop, ATVB, Nashville, USA.
  16. (2015) Lymphatic network in atherosclerosis: the underestimated path. Ewha Womans University, Seoul, Republic of Korea.
  17. (2015) The lymphatic network: new potential therapeutic target in atherosclerosis. International Congress on Lipid Metabolism & Atherosclerosis, Seoul, Republic of Korea.
  18. (2015) The lymphatic network: new potential therapeutic target in atherosclerosis. Centre Hospitalier de l'Université Laval (CHUL), Québec, Canada.
  19. (2015) The lymphatic network: new potential therapeutic target in atherosclerosis. University of Cincinnati, Cincinnati, USA.
  20. (2014) The lymphatic network: new potential therapeutic target in atherosclerosis. Invited by the Hemovascular Group at the Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Canada.
  21. (2014) Le réseau lymphatique : nouvelle cible thérapeutique potentielle dans l'athérosclérose. Invited speaker by the Département de Pharmacologie de l'Université de Montréal, Montréal, Canada.
  22. (2013) Macrophage reverse cholesterol transport in mice relies on the lymphatic vasculature. American Heart Association Scientific Sessions 2013 / Best of AHA Specialty Conferences at Scientific Sessions 2013, Dallas, USA.
  23. (2013) Profound Macrophage Sessility Characterizes Mouse Atherosclerotic Plaques During Disease Progression and Regression. Washington University School of Medicine, St. Louis, MO. Cardiovascular Division, St Louis, USA.
  24. (2013) Lymphatic network and cholesterol transport in atherosclerosis. Montreal Heart Institute, Canada.
  25. (2013) Macrophage reverse cholesterol transport in mice relies on the lymphatic vasculature. Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) Scientific Sessions April 2013, Orlando, USA.
  26. (2012) Reverse Cholesterol Transport Relies On A Functional Lymphatic Network. Washington University School of Medicine, St. Louis, MO. Department of Pathology and Immunology, St Louis, USA.
  27. (2012) Lymphatic vessels are the principal route mediating macrophage reverse cholesterol transport. Montreal Heart Institute, Canada.
  28. (2012) Lymphatic vessels are the principal route mediating macrophage reverse cholesterol transport. Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) Scientific Sessions April 2012, Chicago, USA.
  29. (2011) Role of lymphatic vessels in reverse cholesterol transport. Mount Sinai School of Medicine, New York, New York. Immunology Institute., New York, USA.

Disciplines

  • Cardiologie
  • Biologie cellulaire
  • Biologie moléculaire

Champ d’expertise

  • Système cardiovasculaire
  • Athérosclérose
  • Thromboses et embolies
  • Transport moléculaire
  • Habitudes de vie et santé
  • Hypertension artérielle
  • Physiologie
  • Pathologies