François Lalonde
Modèles mathématiques et forces physiques
- Professeur titulaire
-
Faculté des arts et des sciences - Département de mathématiques et de statistique
André-Aisenstadt, room 6143
Profile
Research expertise
Mes travaux les plus récents se rapportent à la topologie symplectique et aux systèmes hamiltoniens ainsi qu'à une théorie de Floer universelle des lagrangiennes, sujet qui a fait l'objet d'un intense développement depuis une vingtaine d'années. La topologie (ou géométrie) symplectique est l'étude mathématique des espaces courbes, de dimension paire arbitraire, munis d'une forme symplectique, analogue anti-symétrique d'une métrique riemannienne, qui donne à ces espaces la structure qu'il faut pour donner un sens aux lois de la physique aussi bien qu'aux procédés de quantification (passage du classique au quantique). Ce sujet est le versant mathématique de ce que les physiciens appellent la théorie des super-cordes. Son développement s 19est d'abord fait par les mathématiciens (Gromov, Donaldson, 26) et les physiciens (Witten, Vafa,...) et les méthodes employées ont littéralement explosé au cours des dernières années. La plupart de mes travaux porte sur les aspects dits ``hard'' de la topologie symplectique et des systèmes hamiltoniens, en se servant de techniques topologiques, géométriques et analytiques, en particulier des méthodes d'équations aux dérivées partielles elliptiques et de la cohomologie quantique. Ces méthodes sont fondées sur l'étude du comportement de différents espaces de modules de courbes pseudoholomorphes, qui sont solutions d'équations de Cauchy-Riemann généralisées associées à une structure presque complexe.
Biography
François Lalonde, Professor at the Mathematics and Statistics Department of the Université de Montréal, was named Director of the Centre de recherches mathématiques (CRM) on September 14, 2004. The CRM is the first institute of research in mathematical sciences founded in Canada in 1969 A member of the Royal Society of Canada since 1997, François Lalonde's research is mainly in the field of Symplectic geometry and topology. From 1996 to 2000, he directed the Institut des sciences mathématiques (ISM), a consortium of six Québec universities (Montréal, McGill, UQAM, Concordia, Laval and Sherbrooke). In this capacity, he developed the Institute by putting in place measures furthering the place of Montréal, and Québec as a whole, as a North American centre of excellence in mathematical research and training.
Mr. Lalonde was also the Founder and Director of the Centre interuniversitaire de recherche en géométrie différentielle et en topologie (CIRGET) which gathers together the best geometers and topologists from UQAM, McGill, Montreal and Concordia universities. A mathematician and physicist by training, François Lalonde holds a Doctorat d’Etat (1985) from Orsay Center in Paris, in the field of differential topology. He was a Killam Research Fellowship recipient in 2000-2002 and holds a Canada Research Chair in the field of Symplectic Geometry and Topology. He is member of the editorial committees of the Canadian Journal of Mathematics and of the Canadian Bulletin of Mathematics. Member of the scientific committee of the First Canada-France congress in 2004 and plenary speaker at the First Canada-China congress in 1999, his works in collaboration with Dusa McDuff were presented in her plenary address at the ICM in 1998. He is an invited speaker at the ICM 2006.
Affiliations and responsabilities
Research affiliations
Research units
Titulaire
Membre
Teaching and supervision
Student supervision
Theses and dissertation supervision (Papyrus Institutional Repository)
Hamiltonian Floer theory on surfaces
Cycle : Doctoral
Grade : Ph. D.
Aspects géométriques et topologiques du crochet de Poisson des variétés symplectiques
Cycle : Doctoral
Grade : Ph. D.
Sur le h-principe pour les immersions coisotropes et les classes caractéristiques associées
Cycle : Master's
Grade : M. Sc.
Rigidité du crochet de Poisson en topologie symplectique
Cycle : Master's
Grade : M. Sc.
Fibrés symplectiques et la géométrie des difféomorphismes hamiltoniens
Cycle : Master's
Grade : M. Sc.
Sur une classe de structures kählériennes généralisées toriques
Cycle : Doctoral
Grade : Ph. D.
Les actions de groupes en géométrie symplectique et l'application moment
Cycle : Doctoral
Grade : M. Sc.
Introduction à quelques aspects de quantification géométrique.
Cycle : Master's
Grade : M. Sc.
Source spaces and perturbations for cluster complexes
Cycle : Doctoral
Grade : Ph. D.
L'éclatement en géométrie algébrique, différentielle et symplectique
Cycle : Master's
Grade : M. Sc.
Éclatement et contraction lagrangiens et applications
Cycle : Doctoral
Grade : Ph. D.
Invariants de Gromov-Witten et fibrations hamiltoniennes
Cycle : Doctoral
Grade : Ph. D.
Dynamique de N pôles à intensités variables
Cycle : Doctoral
Grade : Ph. D.
Théorème de Kunneth en homologie de Morse
Cycle : Master's
Grade : M. Sc.
Projects
Research projects
Centre de recherches mathématiques (CRM)
Fundamental and Statistical Symplectic Topology
CENTRE DE RECHERCHES MATHEMATIQUES (CRM)
CANADA RESEARCH CHAIR IN DIFFERENTIAL GEOMETRY AND TOPOLOGY
FGR-CRSNG_2017-2018
COURBES J-HOLOMORPHES ET RIGIDITE EN TOPOLOGIE SYMPLECTIQUE ET EN PHYSIQUE-MATHEMATIQUE
QUANTUM TOPOLOGY OF LAGRANGIAN SUBMANIFOLDS
CENTRE DE RECHERCHES MATHEMATIQUES (CRM)
CENTRE DE RECHERCHE MATHÉMATIQUE
QUANTUM TOPOLOGY OF LAGRANGIAN SUBMANIFOLDS
CANADA RESEARCH CHAIR IN DIFFERENTIAL GEOMETRY AND TOPOLOGY
DEMANDE DE STAGE INTERNATIONAL POUR VIRGILE DUCET
DEMANDE DE STAGE INTERNATIONAL POUR XAVIER GLOROT
DEMANDE DE STAGE INTERNATIONAL POUR MUATH KARAKI
DEMANDE DE STAGE INTERNATIONAL POUR LAURENT DELISLE
Outreach
Publications and presentations
Publications
Articles choisis
- -F. Lalonde and Y. Savelyev, The Hofer Geometry of Surfaces, preprint (2012)
- -S. Hu, F. Lalonde and R. Leclercq, Homological Lagrangian Monodromy, 15, 1617-1650 (2011) Geometry and Topology
- -F. Lalonde and A. Teleman, g-areas and commutator length, preprint (2011)
- -E. Kerman and F. Lalonde, Minimality in the Hofer geometry of Lagrangians, preprint (2011)
- -S. Hu and F. Lalonde, Non-splitting of certain groups of Hamiltonian diffeomorphisms, preprint(2011)
- -S. Hu and F. Lalonde, A relative Seidel morphism and the Albers map, 362, 1135-1168 (2009) Trans. Amer. Math. Soc.
- -S. Anjos, F. Lalonde and M. Pinsonnault, The homotopy type of the space of symplectic balls in rational ruled 4-manifolds, 13, 1177-1227 (2009) Geometry and Topology
- -S. Anjos and F. Lalonde, The full homotopy type of symplectic balls in $S^2 \times S^2$ above the critical value, preprint arXiv:math/0406129 (2008) 23 pages ,
- -S. Hu and F. Lalonde, Anti-symplectic involutions and Maslov indices, preprint (2008) 18 pages ,
- -S. Anjos and F. Lalonde, The topology of the space of symplectic balls in $S^2 \times S^2$, 345, 639-642 (2007) C. R. Acad. Sci. Paris, Ser. I
- -F. Lalonde, Lagrangian submanifolds: from the local model to the cluster complex, 456-477 (2006) Proceedings of the International Congress of Mathematicians
- -O. Cornea and F. Lalonde, Cluster Homology (2006) 56 pages , ArXiv Math.SG/0508345
- -O. Cornea and F. Lalonde, Cluster homology: an overview of the construction and results, 12, 1-12(2006) ERA-AMS
- -F. Lalonde, A field theory for symplectic fibrations over surfaces with applications, 8, 1189-1226(2004) Geometry and Topology
- -F. Lalonde and M. Pinsonnault, The topology of the space of symplectic balls in rational 4-manifolds, 122, 347-397 (2004) Duke Mathematical Journal
- -E. Kerman and F. Lalonde, Length minimising paths for symplectically aspherical manifolds, 53, 1503-1526 (2003) Ann. Inst. Fourier
- -F. Lalonde and D. McDuff, Symplectic structures on fiber bundles, 42, 309-347 (2003) Topology
- -F. Lalonde and M. Pinsonnault, Groupes d'automorphismes et plongements symplectiques de boules dans les variétés rationelles, 335, 931-934 (2002) C.R. Acad. Sci. Paris, Ser. I
- -F. Lalonde and D. McDuff, Cohomological properties of ruled symplectic structures on manifolds, Mirror Symmetry IV, 33, 79- (2002) AMS/IP Studies in Advanced Mathematics
- -D. Gatien and F. Lalonde, Holomorphic cylinders with Lagrangian boundaries and Hamiltonian dynamics, 102, 485 (2000) Duke Mathematical Journal
- -F. Lalonde et C. Pestieau, Stabilisation of symplectic inequalities and applications, 196, 63-72(1999) Amer. Math. Soc. Translations, Series 2
- -F. Lalonde, D. McDuff and L. Polterovich, Topological rigidity of Hamiltonian loops and quantum homology, 135, 369-385 (1999) Inventiones Mathematicae
- -F. Lalonde, D. McDuff and L. Polterovich, On the Flux conjectures, 15, 69-86 (1998) CRM Proceedings and Lecture Notes, American Mathematical Society
- -F. Lalonde, J-curves and symplectic invariants, in: (1997) J. Hurtubise and F. Lalonde (eds), Proceedings of the NATO Summer Advanced Institute (SMS) on Gauge Theory and Symplectic Geometry Université de Montréal 1995, Kluwer Academic Publishers, Dordrecht
- -F. Lalonde, New trends in symplectic geometry, 19 (2), 33-50 (1997) invited survey in the new series of C.R. Math. Rep. Acad. Sci. Canada
- -F. Lalonde, Energy and capacities in symplectic topology, in: , 2, 328-374 (1997) W.H. Kazez (ed.), Geometric Topology, Studies in Advanced Mathematics, American Mamthematical Society and International Press
- -F. Lalonde and D. McDuff, Positive paths in the linear symplectic group, 1-20 (1997) The Arnold-Gelfand seminar, Birkhauser
- -F. Lalonde and L. Polterovich, Symplectic diffeomorphisms as isometries of Hofer's norm, 36, 711-728 (1997) Topology
- -F. Lalonde and D. McDuff, J-holomorphic curves and the classification of rational and ruled symplectic 4-manifolds, 1-40 (1996) C.B. Thomas (ed.), Symplectic and Contact Geometry, Proceedings of the Newton Institute Special Year on Symplectic Geometry, Cambridge University Press
- -F. Lalonde and D. McDuff, The classification of ruled symplectic 4-manifolds, 3, 769-778 (1996) Mathematical Research Letters
- -F. Lalonde and D. McDuff, The geometry of symplectic energy, 141, 349-371 (1995) Annals of Mathematics
- -F. Lalonde and D. McDuff, Hofer's $L^{\infty}$-geometry: energy and stability of Hamiltonian flows part II, 122, 35-69 (1995) Inventiones Mathematicae
- -F. Lalonde and D. McDuff, Hofer's $L^{\infty}$-geometry: energy and stability of Hamiltonian flows part I, 122, 1-34 (1995) Inventiones Mathematicae
- -F. Lalonde and D. McDuff, Local Non-Squeezing Theorems and Stability, 364 (1995) Geometric and Functional Analalysis 5 (Special volume in the honour of M. Gromov)
- -M. Audin, F. Lalonde and L. Polterovich, Symplectic rigidity: Lagrangian submanifolds, 117, 271-322(1994) M. Audin and J. Lafontaine (eds.), Holomorphic Curves in Symplectic Geometry, Progress in Mathematics
- -F. Lalonde, Isotopy of symplectic balls, Gromov's radius, and the structure of irrational ruled symplectic 4-manifolds, 300, 273-296 (1994) Mathematische Annalen
Monographies
- -M. Abreu, F. Lalonde, L.Polterovich (eds), New Perspectives and Challenges in Symplectic Field Theory, 49,, 342 (2009) The CRM Proceedings and Lecture Notes
- -P. Biran, O. Cornea and F. Lalonde (eds), Morse theoretical methods in symplectic topology and non-linear analysis, Kluwer Academic Publishers,, Dordrecht (2005) Proceedings of the NATO Advanced Study Institute (Montréal, 2004),
- -Y. Eliashberg, B. Khesin and F. Lalonde (eds), Symplectic and Contact Topology: Interactions and Perspectives, Fields Institute Communications 35,, AMS (2003) Proceedings of the workshop on ''Symplectic topology and higher dimensional Gauge invariants'' (held at the Fields Institute in March-April 2001),
- -F. Lalonde (ed.), Proceedings of the CRM Workshop on Geometry, Topology and Dynamics (Montréal 1995), 15,, AMS (1998) CRM Proceedings and Lecture Notes
- -J. Hurtubise and F. Lalonde (eds), Gauge Theory and Symplectic Geometry, Kluwer Academic Publishers,, Dordrecht (1997) Proceedings of the NATO Summer Advanced Institute on Gauge Theory and Symplectic Geometry (Montréal 1995),
Disciplines
- Applied Mathematics
- Pure Mathematics
- Physical Engineering
- Physics
Areas of expertise
- Topology
- Geometry
- Quantum Phenomena
- Mathematical Analysis
- Combinatorial
- Logic
- Discreet Mathematics
- Mechanical and Physical Processes